Two MBASIC Programs That Write
Application Programs for Accessing a

Database

R. M. Smith
DSN Facility Operations Section

A method was desired to relieve the tedium of writing and testing application
programs. Two utility programs were developed to produce application
programs that perform relational operations on data. No coding is performed by

the user.

l. Introduction

The nature of the MBASIC Processor facilitates its use
by people who are not primarily programmers and who
may never have had any previous programming experi-
ence. Many managers, and other people needing to make
use of management data, fall into this category of user.
However, for many data users, programming is so much
less important than data usage that it would be beneficial
to reduce or eliminate programming in their data
activities. One approach to minimizing programming time
is to make use of a generalized application program
similar to the one described in a previous article (Ref. 1).
A generalized program, once written, allows the user to
concentrate upon data usage rather than program writing.
However, a generalized program requires that the user
spell out an access strategy each time the program is used.
If a specific application is required for repeated use, then
a specialized application program is most desirable. Two

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-36

different approaches to the use of specialized application
programs were described in Refs. 2 and 3. This article
describes the result of some preliminary efforts to design a
simple method of producing an MBASIC application
program while isolating the user from the task of writing
code.

Application programs that extract data from a database
may be data dependent (knowledge of data organization is
built into the application program, making the program
sensitive to changes in data organization) or may possess
varying degrees of data independence (immunity of an
application program to changes in data organization). The
greater the degree of data independence, the less the
effect of changes in the database. The programs described
in this article are preprocessors that accept relational
statements from a user, convert the statements to
MBASIC code, and store the statements as an application
program for later use.

105

Il. Description of the Program ‘WRITER’

‘WRITER’ produces specialized application programs
with a moderate amount of data independence. User input
to the program is fully prompted and makes use of
relational operations (Refs. 4, 5) to specify database access.
The relational operations may be invoked in any order
repeatedly or used singly. Figure 1 illustrates a session
invoking a restriction and a projection in sequence. Figure
2 illustrates the same process in relational notation. Figure
3 is a simplified flow diagram of the program showing the
iterative nature of the main program in accepting user
input and choosing a specified subprogram to assemble
program statements.

In a typical sequence of events, the user
1. Enters the name of the new program to be written.
2. Enters the type of relational operation.

3. Enters the parameters that describe the selected
relational operation.

‘WRITER’ then assembles a program by the following
process:

1. Copies a set of generalized code lines to a
temporary program file.

2. Appends code lines (to the temporary program file)
that are created by “‘WRITER’ and are specific to
the user’s application.

3. Appends standardized subroutines (stored for this
purpose) for each relational operation involved.

4. Copies the temporary program to a file named by
the user.

Figure 4 is a copy of the program produced by
‘WRITER’ using the process depicted in Fig. 1. Line 100
and lines 902 through 918 are the generalized code lines
mentioned previously. Lines 2000 through 2320 and 3000
through 3310 are standardized subroutines for a projection
and restriction, respectively. (Lines 5000 through 5090

106

update a temporary directory relation that describes data
files accessed by the application program.)

lll. Description of the Program ‘WRITPR’

‘WRITPR’ produces specialized application programs
with no data independence. User input is fully prompted
and makes use of relational operations (Refs. 4, 5) to
specify database access. Figure 5 illustrates a session
invoking a restriction and projection (see relational
notation in Fig. 2). Figure 6 is a simplified flow diagram of
the program. The user prompting sequence for ‘WRITPR’
is similar to that of ‘WRITER’ but ‘WRITPR’ differs in its
approach to writing the application program (compare
Figs. 3 and 6). ‘WRITPR’ assembles a program by writing
code lines (on the program named by the user) that are
specific to the user’s application. Figure 7 is a copy of the
program produced by ‘WRITPR’ using the process
depicted in Fig. 5.

IV. Miscellaneous Information

To produce code that is specific to the user’s applica-
tion, both programs use “WRITE ON” statements that
incorporate variables and “counters” into a completed
statement for the application program. Examples of this
process are shown in Figs. 8, 9, and 10 and are taken from
the program ‘WRITPR'. Figure 8 shows the lines of code
that produce lines 110 and 120 of the program presented
in Fig. 7. The code lines in Fig. 9 produce line 130 of Fig.
7, and the code lines in Fig. 10 produce line 150 of Fig. 7.

Each of the sessions (illustrated in Figs. 1 and 5)
requires approximately 3 to 4 min of terminal time and
produces programs that are fully functional, requiring no
testing of the MBASIC code. Both provide the user with a
uniform, extremely simple process for data access. Figure
11 illustrates the data output produced by the application
programs written by “‘WRITER’ and “WRITPR'.

Data files accessed by these programs must be in, at

least, first normal form. The file used in this article (Fig.
12) is in third normal form (Ref. 4).

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-36

References

1. Smith, R. M., “An MBASIC Application Program for Relational Inquiries on a
Database,” in The Deep Space Network Progress Report 42-34, Jet Propulsion
Laboratory, Pasadena, Calif., August 15, 1976.

2. Smith, R. M., “A Relational Database Implemented Using MBASIC,” in The
Deep Space Network Progress Report 42-30, Jet Propulsion Laboratory,
Pasadena, Calif., December 15, 1975.

3. Maiocco, F. R., and Hume, J. P., “Computerizing Goldstone Facility
Maintenance Data for Management Decisions,” in The Deep Space Network
Progress Report 42-32, Jet Propulsion Laboratory, Pasadena, Calif., April 15,
1976.

4. Date, C.]J., An Introduction to Database Systems, Addison-Wesley, 1975.

5. Codd, E. F., “A Relational Model of Data for Large Shared Data Banks,”
Commaunications of ACM, Vol. 13, No. 6, June 1970.

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-36 107

FIIH
ENTER NAME OF NEW FRUOSRAM: INEW

EHTER KFELRTIONAL OFERARTIOM CRF.10 OF
FO0URCE RELATION: EMSeEGRT.ARIZIGHMENT
DOMARIN NAME: OWNER
LOGICAL OFERRTOR: =
LOMAIN YALUE: 1
FROJECT TO: oFILE

ENTEFR RELHATIONAL OFPERRTION R sF..) OF
SOURCE RELRTIOH: oFILE
QURNTITY OF DOMRIME: 3
TRRGET RELATIUN: TERMINAL

DOMAIN HAMES: CONSOPZTRTLDCRTION

ENTER RELRTIONAL UOFERRTION C(FaF4d> OR
TEZT INEW

"STOF™: R

"ITOP": P

"iTOP": STOP

RMS*EQPT.ASSIGNMENT' | OWNER = 12
7 TERMINAL (CON, OPSTAT, LOCATION)

Fig. 2. Relational notation describing the
process illustrated in Figs. 1 and 5

108

Fig. 1. lllustration of a session at a terminal using ‘WRITER’ to create an
application:;program (User responses are to the right of each colon.)

'WRITER'

SELECT
NEW PROGRAM
NAME

CcOoPY
"STANDARD"
CODE TO NEW
PROGRAM

T1/‘
SELECT

RELATIONAL
OPERATION

1

GOsUB

NO YES

SET VARIABLES
FOR RELATIONAL
OPERATION

WRITE CODE
ON NEW

APPLICATION
PROGRAM

APPEND
RELATIONAL
SUBROUTINES

RETURN

STOP

Fig. 3. Simplified flow diagram of ‘WRITER’

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-36

coPyY
100
110
120
130
140
150
160
170
180
190
210
z2en
02
04
9ne
S90S
10
I12
Q14
315
918

2000
2010
2020
2030
2040
20350
080
2070
2080
2090
2100
2110
2120
2130
cl40
2150
clel
2170
2180
2190
200
2210
cec
Z2230
240
2250
2260
2270
2280
c2ee
c284
oc8s
2286
2288
22940
2300
2310
2320

“INEW” TO TERMINAL
JOIN=1600sPROJ=2000 +REST=2000 1NH=44 2 TRRE=S000
COPY “RMSeEOPT.RREL” TO “INEW-
DIFS=" e INEW"

FL1S= RMSeEOPT .ASS IGNMENT < IS =" DWNER " »L0%="=" »[¥$="12"
RES="oF ILE"

GOSUR REST

SOSUB TARG

RENAME ~#HOLDI RS’ eFILE

FL1S="oFILE »uli= 3

STRING DP$CQD:- "CON” » OPSTAT- » LGCATION" -~
NN=3E

SOSUB PRO.J

STRING RCIC1D

DPEN - #HOLD1" s [NPLT»1

AT ENDFILECLY 60 TO S14

INPUT FROM 1 LSING 7037 :RCDCLY

FRINT RCDC1)

50 TO 908

CLOZE 1

REMOVE DIRS

STOP CHARC123#7END OF RUR‘&

OFEN “eSTOL1- »sOUTPUT »2

FLGG=0

DIM FSCLsoTictreTa1y D810

OFEN DIRSINFUT 4

AT ENIFILEC4: 30 TO 2144

INFUT FROM 4:F$C10 D010 Tl D801
ETRING DOMCTOL 50

IF FSC1=FL1$ THEN WRITE ON Z2:Dcl>: " :D%Ct» ELEZE 6O TO
FLoG=FLGG+1

DOMCFLGER =081

IF FSC132FL1S THEN 60 TO co%n
N=DCLy

IF To1a=Dd1s THEN O TO 2140

0 TO 2050

CLOSE 3.4

Z=T (12

LIM DNCEDI sDC1) oDSC10sKEC D
CFEN “oSTO1 7 INPLIT 2

AT ERDFILECS: o0 TO c240

INPUT FROM S:DC13,0%C10

FOR I=1 UNTIL [=0@031

IF DSC1>=DF$Cl: THEN DINCI»=DoCid
REXT 1

60 TO 190

CLOZE 3

OFEN FLIS»INFPLIT,.=

OPEN “eHOLD1 - »UOUTPLUT 54

AT ENDFILECS: 30 TO 23106

INFUT FROM S:8cdy FOR J=1 7O 2
FOR I=1 UNTIL [=@l+1

FOR J=1 UNTIL J=Z+1

IF 145D THEM CH=NN ELSE CH=12
IF J=DNCI> THEMN WRITE Ob 4 LUZING 70827 3k S0 10 iCHAR CCH D
NEXT .1

NEXT I

&0 7O 280

CLOSE 354

RETURNS

c100

Fig. 4. Data independent application program produced by using ‘WRITER’

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-36

109

110

3000
2002

NS0
030
3100
3110
Z1E0
3130
31410
2180
£330
170
2180

]

Lo}

5060
Sa1a
S020
50z20
S040

OFEN ~“eZTO1 7 »OUTFUT 3

FLGE=0

TIM FSCL2aDC1 T +DECL Y

CFEN DIRS »INFLUT «4

AT ENDFILEC4: 0O TO 3050

INFUT FROM 4:FSCLa D01 TOL2DECLD

ITRING DOMCTCL2D

IF FS$<10=FL1S THEN WREITE DN 3001337« :D%C1> ELSE 60 TG Z0%0
FLGR=FLGE+1

£ DOMIFLGG»=D% L o

IF FSC12aFLLS THEN 60 70O Z020
N=DC1)

IF TC1ix=DC1x THEN o0 TO 2090
50 7O =03cC

CLOZE 2.4

TIM D1C1) 02801

ZTRING REIN2

OFEN “eITO17 s [INFLIT 2

AT ENDFILECZ: o0 TO 2170
INPUT FROM 23:D1012sTi2$c1n

Ir Descii=Dix¥ THEN 5O TO 3170
=0 7O =140

CLOZE =
@=01c1n

IF LO%="=" THEN &=0 ELZE 5O TO 210

o0 TO 3240

IF LO%=":7 THEN R=1 ELZIE oD TO 3230

50 TO Z240

IF LO$=CHARCET» THEN R=-1

OPEN “eopH0LDL - »OUTPUT %

OFEN FLIS»INPUT -4

AT ENDFILEC4: O TO 2300

INFUT FROM 4:4¢01 0 FOR I=1 TO N

IF COMPCRSCQ «DVvS =R THEN WRITE ON 5 UIING “(%37 3%

L)

AECIYSCHARCNNDY FOR I=1 TO N-1-~ASIN> SCHARC13D

=0 TO z&70
CLOSE 4.5

I RETURNS

OFEN “eTRAMNIF - »OUTPLUT s 1

WRITE ON 1:RES: 711277 tFLBGI 7 :DOMCI Y FOR I=1 TO FLBU
CLOSE 1

RFPEND "oTRANZF- TO DIFS

FETURNE

Fig. 4 (contd)

JPL DEEP SPACE NETWORK PROGRESS

REPORT 42-36

LOREL "WRITPE"
HRUMN
ENTER NAME OF NEW PROGERM: DNEW
SELECT R RELATIONRL OPERATION CRESTSFROJJOIN: OF ENTER
ZOURCE RELATION: REMISEQFPT .AIZIGHMENT
DOMAIN NAME = OWHER
LOGICRL DFERATOR: =
DOMAIN YALUE: 12
PROJECT TO: TEERM
PROJECT ALL LOMRINZT N
EHTER GURNTITY OF DOMAINZ: 2
ENTER NAMES OF DOMRINS: CONSOFZTH.LOCAT
ZELECT A RELATIONAL DFERRTION CREZT.PROJJIGIN:) OF ENTEF
TEST “DNEW-

END OF RUM

"ETOF™: REZT

"STOP": ITORP

Fig. 5. lllustration of a session at a terminal using ‘WRITPR’ to create an application program

(User responses are to the right of each colon.)

GOsUB #1

'WRITER'

SELECT NAME SET VARIABLES
OF NEW FOR RELATIONAL
PROGRAM OPERATION

L — | RETURN
SELECT
RELATIONAL
OPERATION
GOSUB #1
GOSUB #2
NO YES

WRITE CODE
ON NEW

APPLICATION
PROGRAM

RETURN

GOSsuB #2

APPEND
CLOSURE
STATEMENT

Fig. 6. Simplified flow diagram of ‘WRITPR’

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-36

111

COFY “DNEW” TO TERMINAL

100 STRING COHLOWNERL LOCAT L1 O0FETRL SRECDTI

110 OPEN "RHSeEQRT RIS [BNMENT s INFUT, 1

120 AT ENDFILEC 1 O TO 180G

130 IHFUT FROM 1 :CON1 »OWNERT »LOCATI »OFETRL RECDTIL
140 IF OWNERI="1g27 THEN PRINT COMN1FOFSTRLSLOCATE
150 50 70O 130

e CLOSE I FOR I=1 T 1

170 ZT0F CHARCI3X+7END OF RUN-

Fig. 7. Data dependent application program produced by using ‘WRITPR’

3170 LINE=LINE+L1G

3180 WRITE ON 1:STRCLIME " OPEN < 27< > ISR1SCIIN 27077 2 s INPUT » 7 2.0

3190 LINE=LINE+10

3200 WRITE ON 1:ITRCLINED I RAY ENDFILEC 7 :)4:7) w0 7O 7=
LINE+30+10eR

-,
>

Fig. 8. Sampie code lines from ‘WRITPR’ (lines 110 and 120 of Fig. 7)

3210 LINE=LINE+10

3220 WRITE ON 1 USING “Ce)7 t3TRCLINEY 17 INPUT FROM “:Ji: :°
SDOMCID tSTRCIID :CHAR (44 FOR I=1 TO N-1~TOMCN::
STRCJL) SCHARCL3Y

Fig. 9. Sample code lines from ‘WRITPR’ (line 130 of Fig. 7)

3250 LINE=LINE<LOQ
3260 WRITE ON 1:STRCLINE> - 60 TO “:LINE-<10+10ekK)>

Fig. 10. Sample code lines from ‘WRITPR’ (line 150 of Fig. 7)

112 JPL DEEP SPACE NETWORK PROGRESS REPORT 42-36

LOAD “DNEW"
»RUN

BESC11 OL
CREBIZ LI

END OF RUN

4

LORD “INEW~
*RUN

BBRSCI1 OL 12
CReRIZ UT 1Y

END OF RUN

P4

Fig. 11. Data printout resulting
from running ‘WRITPR’
and ‘WRITER’

COPY “FMIeERFT.

SEZIGHMENT - TO TERMINAL

AAZAR1Z 1Y 2 1Y sOL s 01 DET7S
RESCE1 s 1 X o1 XL »17 0273
CO3B1Ss1xs1XsSP 128107
BESCIZ+14 14000591274
RX3IF09 11517 sER» 190176
IR4C1IZs1 X1 x«0Ls 071071
BRSC11s1cs120L 031274
HR7ZO1S s 1 o 1 X s LIZ »25 0276
BESC13s11911»3P 091274
CCPCO21xe12sUE 151178
CHSR1Z3s1Ys17 0L 1510718
CREBIZ 12917 sUS 110376

g

Fig.12. Structure and content of the relation (data file)
used in this article

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-36

113

